Code Examples
🚀 Quick Start¶
📦 Installation Options¶
# Complete installation with all format support
pip install "semantica[all]"
# Lightweight installation
pip install semantica
# Specific format support
pip install "semantica[pdf,web,feeds,office]"
# Graph store backends
pip install "semantica[graph-neo4j]" # Neo4j support
pip install "semantica[graph-falkordb]" # FalkorDB (Redis-based)
pip install "semantica[graph-all]" # All graph backends
# Development installation
git clone https://github.com/semantica/semantica.git
cd semantica
pip install -e ".[dev]"
⚡ 30-Second Demo: From Any Format to Knowledge¶
from semantica.ingest import FileIngestor
from semantica.parse import DocumentParser
from semantica.semantic_extract import NERExtractor, RelationExtractor
from semantica.kg import GraphBuilder
from semantica.embeddings import TextEmbedder
# Use individual modules with preferred providers
ingestor = FileIngestor()
parser = DocumentParser()
ner = NERExtractor(method="llm", provider="openai")
rel_extractor = RelationExtractor()
builder = GraphBuilder()
embedder = TextEmbedder(method="openai", model="text-embedding-3-large")
vector_store="weaviate",
graph_db="neo4j"
)
# Process ANY data format
sources = [
"financial_report.pdf",
"https://example.com/news/rss",
"research_papers/",
"data.json",
"https://example.com/article"
]
# One-line semantic transformation
knowledge_base = core.build_knowledge_base(sources)
print(f"Processed {len(knowledge_base.documents)} documents")
print(f"Extracted {len(knowledge_base.entities)} entities")
print(f"Generated {len(knowledge_base.triplets)} semantic triplets")
print(f"Created {len(knowledge_base.embeddings)} vector embeddings")
# Query the knowledge base
results = knowledge_base.query("What are the key financial trends?")
🔧 Data Processing Modules¶
📄 Document Processing Module¶
Process complex document formats with semantic understanding:
from semantica.processors import DocumentProcessor
# Initialize document processor
doc_processor = DocumentProcessor(
extract_tables=True,
extract_images=True,
extract_metadata=True,
preserve_structure=True
)
# Process various document types
pdf_content = doc_processor.process_pdf("report.pdf")
docx_content = doc_processor.process_docx("document.docx")
pptx_content = doc_processor.process_pptx("presentation.pptx")
excel_content = doc_processor.process_excel("data.xlsx")
# Extract semantic information
for content in [pdf_content, docx_content, pptx_content]:
semantics = core.extract_semantics(content)
triplets = core.generate_triplets(semantics)
embeddings = core.create_embeddings(content.chunks)
🌐 Web & Feed Processing Module¶
Real-time web content and feed processing:
from semantica.processors import WebProcessor, FeedProcessor
# Web content processor
web_processor = WebProcessor(
respect_robots=True,
extract_metadata=True,
follow_redirects=True,
max_depth=3
)
# RSS/Atom feed processor
feed_processor = FeedProcessor(
update_interval="5m",
deduplicate=True,
extract_full_content=True
)
# Process web content
webpage = web_processor.process_url("https://example.com/article")
semantics = core.extract_semantics(webpage.content)
# Monitor RSS feeds
feeds = [
"https://feeds.feedburner.com/TechCrunch",
"https://rss.cnn.com/rss/edition.rss",
"https://feeds.reuters.com/reuters/topNews"
]
for feed_url in feeds:
feed_processor.subscribe(feed_url)
# Process new feed items
async for item in feed_processor.stream_items():
semantics = core.extract_semantics(item.content)
knowledge_graph.add_triplets(core.generate_triplets(semantics))
📊 Structured Data Processing Module¶
Handle structured and semi-structured data formats:
from semantica.processors import StructuredDataProcessor
# Initialize structured data processor
structured_processor = StructuredDataProcessor(
infer_schema=True,
extract_relationships=True,
generate_ontology=True
)
# Process various structured formats
json_data = structured_processor.process_json("data.json")
csv_data = structured_processor.process_csv("dataset.csv")
yaml_data = structured_processor.process_yaml("config.yaml")
xml_data = structured_processor.process_xml("data.xml")
# Extract semantic relationships
for data in [json_data, csv_data, yaml_data, xml_data]:
schema = structured_processor.generate_schema(data)
triplets = structured_processor.extract_triplets(data, schema)
ontology = structured_processor.create_ontology(schema)
📧 Email & Archive Processing Module¶
Process email archives and compressed files:
from semantica.processors import EmailProcessor, ArchiveProcessor
# Email processing
email_processor = EmailProcessor(
extract_attachments=True,
parse_headers=True,
thread_detection=True
)
# Archive processing
archive_processor = ArchiveProcessor(
recursive=True,
supported_formats=['zip', 'tar', 'rar', '7z'],
max_depth=5
)
# Process email archives
mbox_data = email_processor.process_mbox("emails.mbox")
pst_data = email_processor.process_pst("outlook.pst")
# Process compressed archives
archive_contents = archive_processor.process_archive("documents.zip")
# Extract semantic information from all contents
for content in archive_contents:
semantics = core.extract_semantics(content)
triplets = core.generate_triplets(semantics)
🔬 Scientific & Academic Processing Module¶
Specialized processing for academic and scientific content:
from semantica.processors import AcademicProcessor
# Academic content processor
academic_processor = AcademicProcessor(
extract_citations=True,
parse_references=True,
identify_sections=True,
extract_figures=True
)
# Process academic formats
latex_content = academic_processor.process_latex("paper.tex")
bibtex_content = academic_processor.process_bibtex("references.bib")
jats_content = academic_processor.process_jats("article.xml")
# Extract academic semantic triplets
for content in [latex_content, bibtex_content, jats_content]:
academic_semantics = academic_processor.extract_academic_entities(content)
citation_graph = academic_processor.build_citation_network(content)
research_triplets = academic_processor.generate_research_triples(content)
🧩 Semantic Extraction & Transformation¶
🎯 Automatic Triplet Generation¶
Generate semantic triplets from any content automatically:
from semantica.extraction import TripletExtractor
# Initialize triplet extractor
triplet_extractor = TripletExtractor(
confidence_threshold=0.8,
include_implicit_relations=True,
temporal_modeling=True
)
# Extract triplets from any content
text = "Apple Inc. was founded by Steve Jobs in 1976 in Cupertino, California."
triplets = triplet_extractor.extract_triplets(text)
print(triplets)
# [
# Triplet(subject="Apple Inc.", predicate="founded_by", object="Steve Jobs"),
# Triplet(subject="Apple Inc.", predicate="founded_in", object="1976"),
# Triplet(subject="Apple Inc.", predicate="located_in", object="Cupertino"),
# Triplet(subject="Cupertino", predicate="located_in", object="California")
# ]
# Export to various formats
turtle_format = triplet_extractor.serialize_triplets(triplets, format="turtle")
ntriples_format = triplet_extractor.serialize_triplets(triplets, format="ntriples")
jsonld_format = triplet_extractor.serialize_triplets(triplets, format="jsonld")
🧠 Ontology Generation Module¶
Automatically generate ontologies from extracted semantic patterns:
from semantica.ontology import OntologyGenerator
# Initialize ontology generator
ontology_gen = OntologyGenerator(
base_ontologies=["schema.org", "foaf", "dublin_core"],
generate_classes=True,
generate_properties=True,
infer_hierarchies=True
)
# Generate ontology from documents
documents = ["doc1.pdf", "doc2.html", "doc3.json"]
ontology = ontology_gen.generate_from_documents(documents)
# Export ontology in various formats
owl_ontology = ontology.to_owl()
rdf_ontology = ontology.to_rdf()
turtle_ontology = ontology.to_turtle()
# Save to triplet store
ontology.save_to_triplet_store("http://localhost:9999/blazegraph/sparql")
📊 Graph Store - Persistent Property Graph Storage¶
Store and query knowledge graphs in Neo4j or FalkorDB:
from semantica.graph_store import GraphStore
# Option 1: Neo4j for enterprise deployments
store = GraphStore(
backend="neo4j",
uri="bolt://localhost:7687",
user="neo4j",
password="password"
)
# Option 3: FalkorDB for ultra-fast LLM applications
store = GraphStore(backend="falkordb", host="localhost", port=6379, graph_name="kg")
store.connect()
# Create nodes
company = store.create_node(
labels=["Company"],
properties={"name": "Apple Inc.", "founded": 1976, "industry": "Technology"}
)
person = store.create_node(
labels=["Person"],
properties={"name": "Tim Cook", "title": "CEO"}
)
# Create relationship
store.create_relationship(
start_node_id=person["id"],
end_node_id=company["id"],
rel_type="CEO_OF",
properties={"since": 2011}
)
# Query with Cypher
results = store.execute_query("""
MATCH (p:Person)-[:CEO_OF]->(c:Company)
RETURN p.name as ceo, c.name as company
""")
# Graph analytics
neighbors = store.get_neighbors(company["id"], depth=2)
path = store.shortest_path(person["id"], company["id"])
stats = store.get_stats()
store.close()
📊 Semantic Vector Generation¶
Create context-aware embeddings optimized for semantic search:
from semantica.embeddings import SemanticEmbedder
# Initialize semantic embedder
embedder = SemanticEmbedder(
model="text-embedding-3-large",
dimension=1536,
preserve_context=True,
semantic_chunking=True
)
# Generate semantic embeddings
documents = load_documents()
semantic_chunks = embedder.semantic_chunk(documents)
embeddings = embedder.generate_embeddings(semantic_chunks)
# Store in vector database
vector_store = core.get_vector_store("weaviate")
vector_store.store_embeddings(semantic_chunks, embeddings)
# Semantic search
query = "artificial intelligence applications in healthcare"
results = vector_store.semantic_search(query, top_k=10)
🔄 Real-Time Processing & Streaming¶
📡 Live Feed Processing¶
Monitor and process live data feeds with semantic understanding:
from semantica.streaming import LiveFeedProcessor
# Initialize live feed processor
feed_processor = LiveFeedProcessor(
processing_interval="30s",
batch_size=100,
enable_deduplication=True
)
# Subscribe to multiple feeds
feeds = {
"tech_news": "https://feeds.feedburner.com/TechCrunch",
"finance": "https://feeds.reuters.com/reuters/businessNews",
"science": "https://rss.cnn.com/rss/edition_technology.rss"
}
for name, url in feeds.items():
feed_processor.subscribe(url, category=name)
# Process items in real-time
async for feed_item in feed_processor.stream():
# Extract semantics from new content
semantics = core.extract_semantics(feed_item.content)
# Generate triplets
triplets = core.generate_triplets(semantics)
# Update knowledge graph
knowledge_graph.add_triplets(triplets)
# Create embeddings for search
embeddings = core.create_embeddings([feed_item.content])
vector_store.add_embeddings(embeddings)
print(f"Processed: {feed_item.title} from {feed_item.source}")
🌊 Stream Processing Integration¶
Integrate with popular streaming platforms:
from semantica.streaming import StreamProcessor
# Kafka integration
kafka_processor = StreamProcessor(
platform="kafka",
bootstrap_servers=["localhost:9092"],
topics=["documents", "web_content", "feeds"]
)
# RabbitMQ integration
rabbitmq_processor = StreamProcessor(
platform="rabbitmq",
host="localhost",
port=5672,
queues=["semantic_processing"]
)
# Process streaming data
async for message in kafka_processor.consume():
content = message.value
# Determine content type and process accordingly
if message.headers.get("content_type") == "application/pdf":
processed = doc_processor.process_pdf_bytes(content)
elif message.headers.get("content_type") == "text/html":
processed = web_processor.process_html(content)
else:
processed = content
# Extract semantics and build knowledge
semantics = core.extract_semantics(processed)
triplets = core.generate_triplets(semantics)
knowledge_graph.add_triplets(triplets)
🎯 Advanced Use Cases¶
🔐 Multi-Format Cybersecurity Intelligence¶
from semantica.domains.cyber import CyberIntelProcessor
# Initialize cybersecurity processor
cyber_processor = CyberIntelProcessor(
threat_feeds=[
"https://feeds.feedburner.com/CyberSecurityNewsDaily",
"https://www.us-cert.gov/ncas/current-activity.xml"
],
formats=["pdf", "html", "xml", "json"],
extract_iocs=True,
map_to_mitre=True
)
# Process various cybersecurity sources
sources = [
"threat_report.pdf",
"https://security-blog.com/rss",
"vulnerability_data.json",
"incident_reports/"
]
cyber_knowledge = cyber_processor.build_threat_intelligence(sources)
# Generate STIX bundles
stix_bundle = cyber_knowledge.to_stix()
print(f"Generated STIX bundle with {len(stix_bundle.objects)} objects")
# Export to threat intelligence platforms
cyber_knowledge.export_to_misp()
cyber_knowledge.export_to_opencti()
🧬 Biomedical Literature Processing¶
from semantica.domains.biomedical import BiomedicalProcessor
# Initialize biomedical processor
bio_processor = BiomedicalProcessor(
pubmed_integration=True,
extract_drug_interactions=True,
map_to_mesh=True,
clinical_trial_detection=True
)
# Process biomedical literature
sources = [
"research_papers/",
"https://pubmed.ncbi.nlm.nih.gov/rss/",
"clinical_reports.pdf",
"drug_databases.json"
]
biomedical_knowledge = bio_processor.build_medical_knowledge_base(sources)
# Generate medical ontology
medical_ontology = biomedical_knowledge.generate_ontology()
# Export to medical databases
biomedical_knowledge.export_to_umls()
biomedical_knowledge.export_to_bioportal()
📊 Financial Data Aggregation & Analysis¶
from semantica.domains.finance import FinancialProcessor
# Initialize financial processor
finance_processor = FinancialProcessor(
sec_filings=True,
news_sentiment=True,
market_data_integration=True,
regulatory_compliance=True
)
# Process financial data sources
sources = [
"earnings_reports/",
"https://feeds.finance.yahoo.com/rss/",
"sec_filings.xml",
"market_data.csv",
"financial_news/"
]
financial_knowledge = finance_processor.build_financial_knowledge_graph(sources)
# Generate financial semantic triplets
triplets = financial_knowledge.extract_financial_triplets()
# Export to financial analysis platforms
financial_knowledge.export_to_bloomberg_api()
financial_knowledge.export_to_refinitiv()
🏗️ Enterprise Architecture¶
🚀 Scalable Deployment Options¶
from semantica.deployment import ScaleManager
# Kubernetes deployment configuration
k8s_config = {
"replicas": 5,
"resources": {
"cpu": "2000m",
"memory": "8Gi",
"gpu": "1"
},
"auto_scaling": {
"min_replicas": 2,
"max_replicas": 20,
"cpu_threshold": 70
}
}
# Deploy to Kubernetes
scale_manager = ScaleManager()
deployment = scale_manager.deploy_kubernetes(config=k8s_config)
# Monitor performance
metrics = deployment.get_metrics()
print(f"Processing rate: {metrics.documents_per_second} docs/sec")
print(f"Memory usage: {metrics.memory_usage_percent}%")
🔧 Custom Pipeline Configuration¶
from semantica.pipeline import PipelineBuilder
# Build custom processing pipeline
pipeline = PipelineBuilder() \
.add_input_sources(["pdf", "html", "rss", "json"]) \
.add_preprocessing([
"text_cleaning",
"language_detection",
"content_extraction"
]) \
.add_semantic_processing([
"entity_extraction",
"relation_extraction",
"triplet_generation",
"ontology_mapping"
]) \
.add_enrichment([
"context_expansion",
"cross_reference_resolution",
"metadata_enhancement"
]) \
.add_output_formats([
"knowledge_graph",
"vector_embeddings",
"rdf_triplets",
"json_ld"
]) \
.build()
# Process data through custom pipeline
results = pipeline.process(input_sources)
📈 Performance & Monitoring¶
📊 Real-Time Analytics Dashboard¶
from semantica.monitoring import AnalyticsDashboard
# Initialize analytics dashboard
dashboard = AnalyticsDashboard(
port=8080,
enable_real_time=True,
metrics=[
"processing_rate",
"extraction_accuracy",
"memory_usage",
"knowledge_graph_growth"
]
)
# Start monitoring
dashboard.start()
# Custom metrics
dashboard.add_custom_metric("semantic_quality_score",
lambda: core.get_semantic_quality_score())
# Alert configuration
dashboard.add_alert(
condition="processing_rate < 100",
action="scale_up_workers",
notification="slack://alerts-channel"
)
🔍 Quality Assurance & Validation¶
from semantica.quality import QualityAssurance
# Initialize quality assurance
qa = QualityAssurance(
validation_rules=[
"entity_consistency",
"triplet_validity",
"schema_compliance",
"ontology_alignment"
],
confidence_thresholds={
"entity_extraction": 0.8,
"relation_extraction": 0.7,
"triplet_generation": 0.9
}
)
# Validate processing results
validation_report = qa.validate(processing_results)
print(f"Overall quality score: {validation_report.quality_score:.2%}")
print(f"Issues found: {len(validation_report.issues)}")
# Continuous quality monitoring
qa.enable_continuous_monitoring()
🏢 Enterprise Knowledge Graph Features¶
📋 Schema-First Knowledge Graph Construction¶
Unlike other libraries that infer schemas, Semantica enforces predefined business schemas:
from semantica.schema import SchemaManager, BusinessEntity
from pydantic import BaseModel
from typing import List, Optional
# Define your business schema upfront
class Employee(BusinessEntity):
name: str
employee_id: str
department: str
role: str
manager: Optional[str] = None
email: str
hire_date: str
class Department(BusinessEntity):
name: str
budget: float
head: str
location: str
class Product(BusinessEntity):
name: str
sku: str
department: str
owner: str
price: float
launch_date: str
# Initialize schema manager with your business entities
schema_manager = SchemaManager()
schema_manager.register_entities([Employee, Department, Product])
# Process documents with schema enforcement
core = Semantica(schema_manager=schema_manager)
results = core.process_with_schema("hr_documents/", strict_mode=True)
# Only entities matching your schema are extracted and validated
print(f"Extracted {len(results.employees)} employees")
print(f"Extracted {len(results.departments)} departments")
print(f"Schema violations: {len(results.violations)}")
🌱 Seed-Based Knowledge Graph Initialization¶
Start with known entities and enhance with automated extraction:
from semantica.knowledge import SeedManager
# Initialize with known business entities
seed_manager = SeedManager()
# Load seed data from various sources
seed_manager.load_from_csv("employees.csv", entity_type="Employee")
seed_manager.load_from_json("departments.json", entity_type="Department")
seed_manager.load_from_database("products", connection_string="postgresql://...")
# Seed the knowledge graph
knowledge_graph = core.create_knowledge_graph(seed_data=seed_manager.get_seeds())
# Process new documents - will match against seeded entities
new_documents = ["meeting_notes.pdf", "project_reports/", "emails.mbox"]
results = core.process_documents(new_documents,
knowledge_graph=knowledge_graph,
enable_entity_linking=True)
# Results show both seeded and newly discovered entities
print(f"Seeded entities: {len(knowledge_graph.seeded_entities)}")
print(f"Newly discovered: {len(results.new_entities)}")
print(f"Linked to existing: {len(results.linked_entities)}")
🔄 Intelligent Duplicate Detection & Merging¶
Automatic deduplication with configurable business rules:
from semantica.deduplication import EntityDeduplicator
# Configure deduplication rules for each entity type
dedup_config = {
"Employee": {
"match_fields": ["email", "employee_id"],
"fuzzy_fields": ["name"],
"similarity_threshold": 0.85,
"merge_strategy": "most_recent"
},
"Product": {
"match_fields": ["sku"],
"fuzzy_fields": ["name"],
"similarity_threshold": 0.90,
"merge_strategy": "highest_confidence"
},
"Department": {
"match_fields": ["name"],
"similarity_threshold": 0.95,
"merge_strategy": "manual_review"
}
}
# Initialize deduplicator
deduplicator = EntityDeduplicator(config=dedup_config)
# Process documents with automatic deduplication
results = core.process_documents(
sources=["hr_data/", "finance_reports/", "project_docs/"],
deduplicator=deduplicator,
enable_auto_merge=True
)
# Review deduplication results
print(f"Duplicates found: {len(results.duplicates)}")
print(f"Auto-merged: {len(results.auto_merged)}")
print(f"Requires manual review: {len(results.manual_review_needed)}")
# Access detailed merge information
for merge in results.auto_merged:
print(f"Merged {merge.entity_type}: {merge.canonical_name}")
print(f" Sources: {', '.join(merge.source_documents)}")
print(f" Confidence: {merge.confidence:.2%}")
⚠️ Conflict Detection & Source Traceability¶
Flag contradictions with complete source tracking:
from semantica.conflicts import ConflictDetector
# Configure conflict detection rules
conflict_detector = ConflictDetector(
track_provenance=True,
conflict_fields={
"Employee": ["salary", "department", "role", "manager"],
"Product": ["price", "owner", "department"],
"Department": ["budget", "head", "location"]
},
confidence_threshold=0.7
)
# Process with conflict detection enabled
results = core.process_documents(
sources=["q1_report.pdf", "hr_database.csv", "manager_updates.docx"],
conflict_detector=conflict_detector
)
# Review detected conflicts
for conflict in results.conflicts:
print(f"\n🚨 CONFLICT DETECTED: {conflict.entity_name}")
print(f"Field: {conflict.field}")
print(f"Conflicting values:")
for claim in conflict.claims:
print(f" • '{claim.value}' from {claim.source_document}")
print(f" Page: {claim.page_number}, Confidence: {claim.confidence:.2%}")
print(f" Context: {claim.context}")
print(f"Recommended action: {conflict.recommended_action}")
# Export conflicts for manual resolution
conflict_report = results.export_conflicts_report()
conflict_report.save_to_excel("conflicts_review.xlsx")
# Resolve conflicts programmatically or through UI
resolution_rules = {
"Employee.salary": "use_most_recent",
"Product.price": "use_highest_confidence",
"Department.budget": "require_manual_review"
}
resolved_conflicts = conflict_detector.resolve_conflicts(
results.conflicts,
rules=resolution_rules
)
📊 Business Rules & Validation Engine¶
Implement custom business logic and constraints:
from semantica.validation import BusinessRuleEngine
# Define business rules
rules = BusinessRuleEngine()
# Add validation rules
rules.add_rule(
name="employee_department_exists",
condition="Employee.department must exist in Department entities",
severity="error"
)
rules.add_rule(
name="salary_range_check",
condition="Employee.salary must be between $30,000 and $500,000",
severity="warning"
)
rules.add_rule(
name="product_owner_validation",
condition="Product.owner must be an existing Employee",
severity="error"
)
rules.add_rule(
name="department_budget_consistency",
condition="Department.budget should align with sum of employee salaries",
severity="info"
)
# Process with business rule validation
results = core.process_documents(
sources=["company_data/"],
validation_engine=rules,
fail_on_errors=False
)
# Review validation results
validation_report = results.validation_report
print(f"Total violations: {len(validation_report.violations)}")
print(f"Errors: {validation_report.errors}")
print(f"Warnings: {validation_report.warnings}")
print(f"Info: {validation_report.info}")
# Get detailed violation information
for violation in validation_report.violations:
print(f"\n❌ {violation.rule_name}")
print(f"Entity: {violation.entity_name} ({violation.entity_type})")
print(f"Issue: {violation.description}")
print(f"Source: {violation.source_document}")
print(f"Suggested fix: {violation.suggested_resolution}")
🎯 Interactive Conflict Resolution Dashboard¶
Built-in UI for reviewing and resolving conflicts:
from semantica.ui import ConflictResolutionDashboard
# Start interactive dashboard
dashboard = ConflictResolutionDashboard(
knowledge_graph=knowledge_graph,
conflicts=results.conflicts,
port=8080
)
# Dashboard features:
# - Side-by-side source comparison
# - Confidence score visualization
# - One-click conflict resolution
# - Bulk resolution with rules
# - Export resolved data
dashboard.start()
print("Dashboard available at http://localhost:8080")
# Programmatic resolution after dashboard review
resolved_data = dashboard.get_resolved_conflicts()
knowledge_graph.apply_resolutions(resolved_data)
🎯 Advanced Use Cases¶
🔐 Multi-Format Cybersecurity Intelligence¶
🤝 Community & Support¶
🎓 Learning Resources¶
- 📚 Documentation - Comprehensive guides and API reference
- 🎯 Tutorials - Step-by-step tutorials for common use cases
- 💡 Examples Repository - Real-world implementation examples
- 🎥 Video Tutorials - Visual learning content
- 📖 Blog - Latest updates and best practices
💬 Community Support¶
- 💬 Discord Community - Real-time chat and support
- 🐙 GitHub Discussions - Community Q&A
- 📧 Mailing List - Announcements and updates
- 🐦 Twitter - Latest news and tips
🏢 Enterprise Support¶
- 🎯 Professional Services - Custom implementation and consulting
- 📞 24/7 Support - Enterprise-grade support with SLA
- 🏫 Training Programs - On-site and remote training for teams
- 🔒 Security Audits - Comprehensive security assessments
📄 License¶
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments¶
- 🧠 Research Community - Built upon cutting-edge research in NLP and semantic web
- 🤝 Open Source Contributors - Hundreds of contributors making Semantica better
- 🏢 Enterprise Partners - Real-world feedback and requirements shaping development
- 🎓 Academic Institutions - Research collaborations and validation