Modules & Architecture¶
Complete guide to Semantica's modular architecture and how to use each component.
Modular Design
Each Semantica module works independently. Use only what you need for your specific use case.
Architecture Overview¶
Semantica is organized into six logical layers - each with specific responsibilities:
-
Input Layer
Data ingestion and preparation
Modules: Ingest, Parse, Split, Normalize
-
Core Processing
Intelligence and understanding
Modules: Semantic Extract, Knowledge Graph, Ontology, Reasoning
-
Storage
Persistent data storage
Modules: Embeddings, Vector Store, Graph Store, Triplet Store
-
Quality Assurance
Data quality and consistency
Modules: Deduplication, Conflicts
-
Context & Memory
Agent memory and foundation data
Modules: Context, Seed, LLM Providers
-
Output & Orchestration
Export, visualization, and workflows
Modules: Export, Visualization, Pipeline
Input Layer¶
Ingest Module¶
Data ingestion from multiple sources
from semantica.ingest import FileIngestor, WebIngestor
# File ingestion
ingestor = FileIngestor()
documents = ingestor.ingest_directory("data/")
# Web ingestion
web_ingestor = WebIngestor()
pages = web_ingestor.ingest_urls(["https://example.com"])
What it does: - File formats - PDF, DOCX, TXT, JSON, CSV - Web scraping - Extract content from websites - Database - Connect to SQL and NoSQL databases - Batch processing - Handle large datasets efficiently
Use Cases: - Document processing pipelines - Web data extraction - Database integration - Multi-source data collection
Parse Module¶
Document parsing and text extraction
from semantica.parse import DocumentParser
parser = DocumentParser()
parsed = parser.parse_document("document.pdf")
text = parsed["full_text"]
metadata = parsed["metadata"]
What it does: - Text extraction - Extract clean text from documents - Metadata parsing - Extract titles, authors, dates - Structure analysis - Identify sections, headings - OCR support - Handle scanned documents
Use Cases: - PDF processing - Document analysis - Content extraction - Metadata harvesting
Split Module¶
Text chunking and segmentation
from semantica.split import TextSplitter
splitter = TextSplitter(method="semantic")
chunks = splitter.split(text, chunk_size=1000, overlap=200)
What it does: - Intelligent chunking - Split text while preserving context - Semantic splitting - Break at natural boundaries - Size control - Manage chunk sizes for processing - Overlap handling - Maintain context between chunks
Use Cases: - Document preprocessing - Embedding preparation - RAG systems - Large document processing
Normalize Module¶
Data cleaning and standardization
from semantica.normalize import DataNormalizer
normalizer = DataNormalizer()
clean_text = normalizer.normalize_text(text)
standardized_date = normalizer.normalize_date("Jan 1st, 2020")
What it does: - Text cleaning - Remove noise and artifacts - Date standardization - Convert to ISO format - Name normalization - Standardize person names - Entity normalization - Clean up company names
Use Cases: - Data preprocessing - Quality improvement - Standardization - Consistency enforcement
Core Processing¶
Semantic Extract Module¶
Entity and relationship extraction
from semantica.semantic_extract import NERExtractor, RelationExtractor
# Entity extraction
ner = NERExtractor()
entities = ner.extract("Apple Inc. was founded by Steve Jobs.")
# Relationship extraction
rel_extractor = RelationExtractor()
relationships = rel_extractor.extract(text, entities)
What it does: - Named Entity Recognition - Find people, orgs, locations - Relationship extraction - Find connections between entities - Custom entities - Define your own entity types - Confidence scoring - Quality assessment for extractions
Use Cases: - Knowledge graph construction - Document analysis - Information extraction - Content understanding
Knowledge Graph Module¶
Graph construction and management
from semantica.kg import GraphBuilder, GraphAnalyzer
# Build graph
builder = GraphBuilder()
kg = builder.build({"entities": entities, "relationships": relationships})
# Analyze graph
analyzer = GraphAnalyzer()
stats = analyzer.analyze(kg)
What it does: - Graph construction - Build knowledge graphs from data - Graph analysis - Calculate metrics and statistics - Graph querying - Search and retrieve information - Graph manipulation - Merge, split, transform graphs
Use Cases: - Knowledge base creation - Graph analytics - Information retrieval - Data integration
Ontology Module¶
Schema definition and validation
from semantica.ontology import OntologyManager
# Define ontology
ontology = OntologyManager()
ontology.add_class("Person", ["name", "birth_date"])
ontology.add_relationship("works_for", "Person", "Organization")
# Validate data
is_valid = ontology.validate_graph(kg)
What it does: - Schema definition - Define data structure - Data validation - Ensure data conforms to schema - Inheritance - Create hierarchical relationships - Constraints - Enforce data quality rules
Use Cases: - Data modeling - Quality assurance - Schema management - Rule enforcement
Reasoning Module¶
Logical inference and deduction
from semantica.reasoning import ReasoningEngine
engine = ReasoningEngine()
inferences = engine.infer(kg, rules=["transitivity", "symmetry"])
What it does: - Logical inference - Derive new facts from existing ones - Pattern matching - Find complex patterns in data - Consistency checking - Detect contradictions - Decision support - Automated reasoning
Use Cases: - Knowledge discovery - Decision making - Consistency checking - Advanced analytics
Storage Layer¶
Embeddings Module¶
Vector embeddings and similarity
from semantica.embeddings import EmbeddingGenerator
generator = EmbeddingGenerator(model="sentence-transformers")
embeddings = generator.generate(["text1", "text2"])
similarity = generator.similarity(embeddings[0], embeddings[1])
What it does: - Text embeddings - Convert text to vectors - Similarity search - Find similar content - Clustering - Group related items - AI integration - Provide context to LLMs
Use Cases: - Semantic search - Recommendation systems - Clustering - AI context
Vector Store Module¶
Vector database management
from semantica.vector_store import VectorStore
store = VectorStore(backend="faiss")
store.add_vectors(embeddings, ids)
results = store.search(query_vector, top_k=10)
What it does: - Vector storage - Efficient vector database - Fast search - Approximate nearest neighbor search - Indexing - Optimize for performance - Batch operations - Handle large datasets
Use Cases: - Semantic search - RAG systems - Recommendation engines - Similarity matching
Graph Store Module¶
Graph database integration
from semantica.graph_store import GraphStore
store = GraphStore(backend="neo4j")
store.add_nodes(entities)
store.add_edges(relationships)
results = store.query("MATCH (n)-[r]->(m) RETURN n, r, m")
What it does: - Graph persistence - Store graphs in databases - Graph queries - Cypher and Gremlin support - Graph algorithms - Path finding, centrality - Transactions - ACID compliance
Use Cases: - Knowledge graph storage - Graph analytics - Network analysis - Relationship queries
Triplet Store Module¶
Triple-based storage
from semantica.triplet_store import TripletStore
store = TripletStore()
store.add_triplets(subject, predicate, object)
triplets = store.get_triplets(entity="Apple Inc.")
What it does: - Triple storage - Store (subject, predicate, object) triples - Pattern matching - Find specific patterns - RDF support - Semantic web standards - Bulk operations - Efficient batch processing
Use Cases: - Semantic web - Knowledge representation - Linked data - Triple stores
Quality Assurance¶
Deduplication Module¶
Entity deduplication and resolution
from semantica.deduplication import EntityResolver
resolver = EntityResolver()
merged_entities = resolver.resolve(entities, strategy="semantic")
What it does: - Duplicate detection - Find similar entities - Entity resolution - Merge duplicate records - Similarity scoring - Quality assessment - Record linkage - Connect related records
Use Cases: - Data cleaning - Master data management - Record linkage - Quality improvement
Conflicts Module¶
Conflict detection and resolution
from semantica.conflicts import ConflictDetector
detector = ConflictDetector()
conflicts = detector.detect_conflicts(kg)
resolved = detector.resolve(conflicts, strategy="most_recent")
What it does: - Conflict detection - Find contradictory information - Resolution strategies - Automated conflict resolution - Source reliability - Trustworthiness assessment - Temporal analysis - Time-based conflict handling
Use Cases: - Data quality - Consistency checking - Trust management - Conflict resolution
Context & Memory¶
Context Module¶
Context management for AI agents
from semantica.context import ContextManager
manager = ContextManager()
context = manager.get_context(query, history)
What it does: - Context tracking - Maintain conversation context - Memory management - Store and retrieve context - Relevance scoring - Find relevant context - Session management - Handle multiple conversations
Use Cases: - AI agents - Chatbots - Conversational AI - Context-aware systems
Seed Module¶
Foundation data and knowledge
from semantica.seed import SeedData
seed = SeedData()
knowledge = seed.get_knowledge("technology", "companies")
What it does: - Seed knowledge - Foundation data for domains - Knowledge bases - Pre-built domain knowledge - Quick start - Bootstrap applications - Domain models - Industry-specific data
Use Cases: - Domain bootstrapping - Quick start data - Industry knowledge - Foundation models
LLM Providers Module¶
Large Language Model integration
from semantica.llms import LLMProvider
provider = LLMProvider(model="gpt-4")
response = provider.generate(prompt, context=kg)
What it does: - LLM integration - Connect to various LLM providers - Prompt engineering - Optimize prompts for results - Context injection - Provide knowledge graph context - Response parsing - Extract structured outputs
Use Cases: - AI generation - Question answering - Text completion - Knowledge reasoning
Output & Orchestration¶
Export Module¶
Data export and serialization
from semantica.export import GraphExporter
exporter = GraphExporter()
exporter.export(kg, format="json", filename="output.json")
What it does: - Multiple formats - JSON, CSV, RDF, GraphML - Database export - Export to various databases - Streaming - Handle large datasets - Filtering - Export specific data subsets
Use Cases: - Data sharing - System integration - Backup and restore - Format conversion
Visualization Module¶
Graph visualization and analysis
from semantica.visualization import GraphVisualizer
visualizer = GraphVisualizer()
visualizer.plot(kg, layout="force_directed")
What it does: - Graph visualization - Interactive graph plots - Custom styling - Tailored visual appearance - Analytics charts - Statistics and metrics - Exploration tools - Interactive data exploration
Use Cases: - Data exploration - Presentation - Analysis - Reporting
Pipeline Module¶
Workflow orchestration
from semantica.pipeline import Pipeline
pipeline = Pipeline()
pipeline.add_step("ingest", FileIngestor())
pipeline.add_step("extract", NERExtractor())
pipeline.add_step("build", GraphBuilder())
result = pipeline.run("data/")
What it does: - Workflow orchestration - Coordinate multiple steps - Parallel processing - Run steps concurrently - Progress tracking - Monitor pipeline execution - Error handling - Robust error management
Use Cases: - Data processing - Workflow automation - Batch processing - System integration
New Features & Modules¶
Change Management Module¶
Version control and audit trails
from semantica.change_management import TemporalVersionManager
manager = TemporalVersionManager(storage_path="versions.db")
snapshot = manager.create_snapshot(kg, "v1.0", "user@example.com", "Initial version")
What it does: - Version control - Track changes over time - Audit trails - Complete change history - Data integrity - SHA-256 checksums - Change comparison - Detailed diff analysis
Use Cases: - Knowledge graph versioning - Compliance tracking - Data governance - Change management
Provenance Module¶
W3C PROV-O compliant tracking
from semantica.provenance import ProvenanceManager
manager = ProvenanceManager()
manager.track_entity("entity_1", "document.pdf", "person")
What it does: - W3C PROV-O compliant - Industry standard tracking - Complete lineage - End-to-end traceability - Source attribution - Track data origins - Integrity verification - Tamper detection
Use Cases: - Regulatory compliance - Data provenance - Audit trails - Source tracking
Core Module¶
Framework orchestration and configuration
from semantica.core import Semantica, Config
# Initialize framework
semantica = Semantica(config=Config())
result = semantica.process("data/")
What it does: - Framework orchestration - Central coordination - Configuration management - Settings and preferences - Lifecycle management - Start/stop/restart - Plugin system - Extensible architecture
Use Cases: - Framework initialization - Configuration management - Plugin development - System orchestration
Getting Started¶
Quick Start Example¶
# Complete pipeline example
from semantica.ingest import FileIngestor
from semantica.semantic_extract import NERExtractor, RelationExtractor
from semantica.kg import GraphBuilder
from semantica.pipeline import Pipeline
# Create pipeline
pipeline = Pipeline()
pipeline.add_step("ingest", FileIngestor())
pipeline.add_step("ner", NERExtractor())
pipeline.add_step("relations", RelationExtractor())
pipeline.add_step("build", GraphBuilder())
# Run pipeline
kg = pipeline.run("documents/")
print(f"Built graph with {len(kg['entities'])} entities")
Choose Your Modules¶
For Document Processing: - Ingest → Parse → Split → Semantic Extract → Knowledge Graph
For Web Scraping: - Ingest (Web) → Normalize → Semantic Extract → Graph Store
For AI Agents: - Context → LLM Providers → Reasoning → Export
For Analytics: - Knowledge Graph → Graph Store → Visualization → Export
Module Reference¶
| Module | Purpose | Key Classes | Use Cases |
|---|---|---|---|
| Ingest | Data ingestion | FileIngestor, WebIngestor | File processing, web scraping |
| Parse | Document parsing | DocumentParser | PDF processing, text extraction |
| Split | Text chunking | TextSplitter | RAG systems, preprocessing |
| Normalize | Data cleaning | DataNormalizer | Quality improvement |
| Semantic Extract | Information extraction | NERExtractor, RelationExtractor | Knowledge graphs |
| Knowledge Graph | Graph management | GraphBuilder, GraphAnalyzer | Graph construction |
| Ontology | Schema management | OntologyManager | Data modeling |
| Reasoning | Logical inference | ReasoningEngine | Knowledge discovery |
| Embeddings | Vector embeddings | EmbeddingGenerator | Semantic search |
| Vector Store | Vector database | VectorStore | Similarity search |
| Graph Store | Graph database | GraphStore | Graph storage |
| Triplet Store | Triple storage | TripletStore | Semantic web |
| Deduplication | Entity resolution | EntityResolver | Data quality |
| Conflicts | Conflict resolution | ConflictDetector | Consistency |
| Context | Context management | ContextManager | AI agents |
| Seed | Foundation data | SeedData | Domain knowledge |
| LLM Providers | LLM integration | LLMProvider | AI generation |
| Export | Data export | GraphExporter | Data sharing |
| Visualization | Graph visualization | GraphVisualizer | Data exploration |
| Pipeline | Workflow orchestration | Pipeline | Process automation |
| Change Management | Version control | TemporalVersionManager | Audit trails |
| Provenance | Data lineage | ProvenanceManager | Source tracking |
| Core | Framework orchestration | Semantica, Config | System management |
Need Help?¶
- Documentation: Getting Started
- Examples: Cookbook
- Community: Discord
- Issues: GitHub Issues
- Support: Contact Us