Skip to content

LLM Providers Module

The semantica.llms module provides a unified interface for LLM providers, supporting Groq, OpenAI, HuggingFace, and LiteLLM (100+ LLMs) with clean imports and consistent API.

Overview

The LLM Providers Module provides a unified interface for Large Language Model (LLM) providers. It abstracts away provider-specific details, enabling you to switch between different LLM providers without changing your code.

What is the LLM Providers Module?

The LLM Providers module provides:

  • Unified LLM APIs: Single interface for Groq, OpenAI, HuggingFace, and LiteLLM (100+ models)
  • Easy Provider Switching: Change providers without code changes
  • Multiple Model Support: Access to 100+ LLMs through LiteLLM
  • GraphRAG Integration: Seamless integration with GraphRAG reasoning features
  • Structured Output: Generate structured data from LLM responses

Why Use the LLM Providers Module?

  • Flexibility: Switch between providers based on cost, speed, or capability
  • Consistency: Same API regardless of provider
  • Local Models: Support for local HuggingFace models
  • Fast Inference: Groq for ultra-fast inference
  • Enterprise Models: Access to OpenAI, Anthropic, and other enterprise providers

How It Works

The LLM Providers module follows a simple workflow:

  1. Provider Selection: Choose a provider (Groq, OpenAI, HuggingFace, LiteLLM)
  2. Model Configuration: Configure model name, API keys, and parameters
  3. Text Generation: Generate text using a consistent API
  4. Structured Output: Optionally generate structured data (JSON, entities, etc.)

Quick Start

from semantica.llms import Groq, OpenAI, HuggingFaceLLM, LiteLLM
import os

# Groq - Fast inference
groq = Groq(model="llama-3.1-8b-instant", api_key=os.getenv("GROQ_API_KEY"))
response = groq.generate("What is AI?")

# OpenAI
openai = OpenAI(model="gpt-4", api_key=os.getenv("OPENAI_API_KEY"))
response = openai.generate("What is AI?")

# HuggingFace - Local models
hf = HuggingFaceLLM(model_name="gpt2")  # or model="gpt2"
response = hf.generate("What is AI?")

# LiteLLM - Unified interface to 100+ LLMs
litellm = LiteLLM(model="openai/gpt-4o", api_key=os.getenv("OPENAI_API_KEY"))
response = litellm.generate("What is AI?")

Providers

Groq

Fast inference provider using Groq's API.

from semantica.llms import Groq

groq = Groq(
    model="llama-3.1-8b-instant",
    api_key="your-api-key"  # or use GROQ_API_KEY env var
)

response = groq.generate("Hello, world!")
structured = groq.generate_structured("Extract entities from: Apple Inc.")

Parameters: - model (str): Model name (default: "llama-3.1-8b-instant") - api_key (str, optional): Groq API key (default: from GROQ_API_KEY env var) - **kwargs: Additional provider options

Methods: - generate(prompt: str, **kwargs) -> str: Generate text from prompt - generate_structured(prompt: str, **kwargs) -> Dict[str, Any]: Generate structured JSON output - is_available() -> bool: Check if provider is available

OpenAI

OpenAI API provider for GPT models.

from semantica.llms import OpenAI

openai = OpenAI(
    model="gpt-4",
    api_key="your-api-key"  # or use OPENAI_API_KEY env var
)

response = openai.generate("Hello, world!")

Parameters: - model (str): Model name (default: "gpt-3.5-turbo") - api_key (str, optional): OpenAI API key (default: from OPENAI_API_KEY env var) - **kwargs: Additional provider options

Methods: - generate(prompt: str, **kwargs) -> str: Generate text from prompt - generate_structured(prompt: str, **kwargs) -> Dict[str, Any]: Generate structured JSON output - is_available() -> bool: Check if provider is available

HuggingFaceLLM

Local LLM inference using HuggingFace Transformers.

from semantica.llms import HuggingFaceLLM

hf = HuggingFaceLLM(
    model_name="gpt2",
    device="cuda"  # or "cpu", default: auto-detect
)

response = hf.generate("Hello, world!")

Parameters: - model_name (str, optional): HuggingFace model name (default: "gpt2") - model (str, optional): Alias for model_name (for consistency with other providers) - device (str, optional): Device to use ("cuda" or "cpu", default: auto-detect) - **kwargs: Additional provider options

Note: Both model and model_name are supported for consistency with other providers.

Methods: - generate(prompt: str, **kwargs) -> str: Generate text from prompt - generate_structured(prompt: str, **kwargs) -> Dict[str, Any]: Generate structured JSON output - is_available() -> bool: Check if provider is available

LiteLLM

Unified interface to 100+ LLM providers via LiteLLM library.

from semantica.llms import LiteLLM

# Use any provider via LiteLLM
litellm = LiteLLM(
    model="openai/gpt-4o",  # Provider/model format
    api_key=os.getenv("OPENAI_API_KEY")
)

# Or use other providers
litellm = LiteLLM(model="anthropic/claude-sonnet-4-20250514")
litellm = LiteLLM(model="groq/llama-3.1-8b-instant")
litellm = LiteLLM(model="azure/gpt-4")

response = litellm.generate("Hello, world!")

Parameters: - model (str): Model identifier in format "provider/model-name" - Examples: "openai/gpt-4o", "anthropic/claude-sonnet-4-20250514", "groq/llama-3.1-8b-instant", "azure/gpt-4" - api_key (str, optional): API key (can use environment variables) - **kwargs: Additional LiteLLM options (temperature, max_tokens, etc.)

Methods: - generate(prompt: str, **kwargs) -> str: Generate text from prompt - generate_structured(prompt: str, **kwargs) -> Dict[str, Any]: Generate structured JSON output - is_available() -> bool: Check if provider is available

Supported Providers: - OpenAI, Anthropic, Groq, Azure, Bedrock, Vertex AI, Cohere, Mistral, and 90+ more - See LiteLLM Documentation for full list

Integration with GraphRAG

The LLM providers integrate seamlessly with GraphRAG reasoning:

from semantica.context import AgentContext
from semantica.llms import Groq
from semantica.vector_store import VectorStore
import os

context = AgentContext(
    vector_store=VectorStore(backend="faiss"),
    knowledge_graph=kg
)

llm_provider = Groq(
    model="llama-3.1-8b-instant",
    api_key=os.getenv("GROQ_API_KEY")
)

result = context.query_with_reasoning(
    query="What IPs are associated with security alerts?",
    llm_provider=llm_provider,
    max_hops=2
)

print(f"Response: {result['response']}")
print(f"Reasoning Path: {result['reasoning_path']}")

Common Parameters

All providers support common generation parameters:

  • temperature (float): Sampling temperature (0.0-2.0)
  • max_tokens (int): Maximum tokens to generate
  • top_p (float): Nucleus sampling parameter
  • frequency_penalty (float): Frequency penalty
  • presence_penalty (float): Presence penalty

Example:

response = groq.generate(
    "What is AI?",
    temperature=0.7,
    max_tokens=500,
    top_p=0.9
)

Error Handling

All providers gracefully handle errors:

try:
    response = groq.generate("Hello")
except ProcessingError as e:
    print(f"Generation failed: {e}")

If a provider is not available (library not installed, API key missing), a ProcessingError is raised with a helpful message.

Examples

Basic Text Generation

from semantica.llms import Groq

groq = Groq(model="llama-3.1-8b-instant")
response = groq.generate("Explain quantum computing in simple terms.")
print(response)

Structured Output

from semantica.llms import OpenAI

openai = OpenAI(model="gpt-4")
result = openai.generate_structured(
    "Extract entities from: Apple Inc. was founded by Steve Jobs in 1976."
)
# Returns: {"entities": [{"name": "Apple Inc.", "type": "Organization"}, ...]}

Using LiteLLM for Multiple Providers

from semantica.llms import LiteLLM

# Switch between providers easily
providers = [
    LiteLLM(model="openai/gpt-4o"),
    LiteLLM(model="anthropic/claude-sonnet-4-20250514"),
    LiteLLM(model="groq/llama-3.1-8b-instant")
]

for provider in providers:
    response = provider.generate("What is AI?")
    print(f"{provider.model}: {response[:50]}...")

Installation

Most providers require additional dependencies:

# Groq
pip install groq

# OpenAI
pip install openai

# HuggingFace
pip install transformers torch

# LiteLLM (supports 100+ providers)
pip install litellm

Cookbook

Interactive tutorials that use LLM providers:

  • Advanced Extraction: Custom extractors and LLM-based extraction
  • Topics: LLM extraction, custom models, complex pattern matching
  • Difficulty: Advanced
  • Use Cases: Domain-specific extraction, complex schemas

  • GraphRAG Complete: Production-ready GraphRAG system using LLMs

  • Topics: GraphRAG, LLM integration, hybrid retrieval
  • Difficulty: Advanced
  • Use Cases: Building AI applications with knowledge graphs

See Also